大数据产业将步入一体化发展期 未来中国基础性数据分析人才缺口巨大

 行业动态    | 文章来源互联网 |     2020-12-30 11:27

12月28日,国家发展改革委发布了《关于加快构建全国一体化大数据中心协同创新体系的指导意见》(下称《指导意见》)。在业内人士看来,《指导意见》的发布,意味着国家将在顶层设计上规范大数据产业发展,用“全国一盘棋”体系破除“数据孤岛”,从而促进大数据在行业、公司的应用场景落地和创新。业内人士强调,除了大数据产业本身、大数据赋能的行业,随着大数据产业发展,服务器芯片、操作系统、自然语言处理等关键技术产品也将获得更大的市场和发展机遇。

现在随着智慧城市、智慧政务、工业互联网等建设,大数据开始在更多的场景落地,真正开启赋能产业和社会发展。

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

未来中国基础性数据分析人才缺口巨大

据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。